Agilent Infinity Series liquid chromatograph and 6420 triple quadrupole mass spectrometer

Here’s a picture of our LC-MS.


Its a triple quadrupole instrument, so its designed for quantitative analysis of any compound you can solubilise and ionise, which includes pretty much anything relevant to metabolism, physiology, pharmacology and biochemistry.

Its a conventional pressure LC stack featuring thermostatted autosampler for 100 x 2ml vials, a thermostatted column compartment and a diode array detector at the bottom, if needed. We also have a fluorescence detector which isn’t shown.

We have two sources for the MS, a conventional electrospray ionisation [ESI] source and a Multi Mode Ionisation [MMI] source which can be set for full ESI, full Atmospheric Pressure Chemical Ionisation [APCI] or a mixture of the two, with full control over the corona current and charging voltage.

This instrument is currently analysing sugar derivatives and has previously been used to quantify phenolic compounds and anthocyanins in cherries, triglycerides in human plasma and serum and neonicotinoid pesticides. I am currently developing a method to target 15 bile acids in human samples and another to target lignin-derived phenolics in estuarine plant material and sediment.


GC-MS: Thermo Trace GC Ultra – DSQ

This is our venerable single quadrupole GC-MS (Gas chromatography–mass spectrometry). 


This is one of the two mass spectrometers we have, the other being the Agilent triple quadrupole LC-MS. It is a fairly standard instrument with the split/splitless injector and a 30 metre VF5-MS column. The recent acquisition of the Gerstel Multipurpose Sampler has given it an entire new lease of life, allowing us to perform sample preparation and automatic injection by headspace analysis, Solid Phase Micro Extraction (SPME) and conventional liquid injection. The instrument lives in an air-conditioned annex of my lab and is run from the PC next to it via Thermo Xcalibur v1.4 software and Gerstel’s Maestro software for the MPS.

Current applications for this instrument include a research project into the function of terpenoids in plant immune response, the analysis of sugars in a wide variety of samples by acetylation for GC, profiling of volatile compounds in seaweed and metabolite profiling by methyl chloroformate derivatisation, by the method of Smart et al (1). 

(1) Smart, K. F.; Aggio, R. M. B.; VanHoutte, J. R. and Villas-Bôas, S.G. 2010. Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography-mass spectrometry (GC-MS). Nature Protocols 5: 1709 – 1729. doi:10.1038/nprot.2010.108